3.350 \(\int (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx\)

Optimal. Leaf size=89 \[ -\frac{a^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{3 f \sqrt{a \sin (e+f x)+a}}-\frac{a \cos (e+f x) \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}{3 f} \]

[Out]

-(a^2*Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(3*f*Sqrt[a + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin
[e + f*x]]*(c - c*Sin[e + f*x])^(3/2))/(3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.178479, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {2740, 2738} \[ -\frac{a^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{3 f \sqrt{a \sin (e+f x)+a}}-\frac{a \cos (e+f x) \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}{3 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2),x]

[Out]

-(a^2*Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(3*f*Sqrt[a + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin
[e + f*x]]*(c - c*Sin[e + f*x])^(3/2))/(3*f)

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rubi steps

\begin{align*} \int (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx &=-\frac{a \cos (e+f x) \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}{3 f}+\frac{1}{3} (2 a) \int \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2} \, dx\\ &=-\frac{a^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{3 f \sqrt{a+a \sin (e+f x)}}-\frac{a \cos (e+f x) \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}{3 f}\\ \end{align*}

Mathematica [A]  time = 0.429396, size = 70, normalized size = 0.79 \[ -\frac{c (\sin (e+f x)-1) (9 \sin (e+f x)+\sin (3 (e+f x))) \sec ^3(e+f x) (a (\sin (e+f x)+1))^{3/2} \sqrt{c-c \sin (e+f x)}}{12 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2),x]

[Out]

-(c*Sec[e + f*x]^3*(-1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]]*(9*Sin[e + f*x] +
 Sin[3*(e + f*x)]))/(12*f)

________________________________________________________________________________________

Maple [A]  time = 0.141, size = 55, normalized size = 0.6 \begin{align*}{\frac{ \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}+2 \right ) \sin \left ( fx+e \right ) }{3\,f \left ( \cos \left ( fx+e \right ) \right ) ^{3}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{3}{2}}} \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x)

[Out]

1/3/f*(cos(f*x+e)^2+2)*(-c*(-1+sin(f*x+e)))^(3/2)*(a*(1+sin(f*x+e)))^(3/2)*sin(f*x+e)/cos(f*x+e)^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.44806, size = 155, normalized size = 1.74 \begin{align*} \frac{{\left (a c \cos \left (f x + e\right )^{2} + 2 \, a c\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{3 \, f \cos \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/3*(a*c*cos(f*x + e)^2 + 2*a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e)/(f*cos(f*x +
e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: AttributeError